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T AN

THE RESPONSE OF TWO FLUID-COUPLED PLATES TO AN INCIDENT
PRESSURE PULSE

INTRODUCTION

Investigations of the interaction of plates and pressure
waves have been used to predict the effects of underwater
explosions on a given structure [1-3]. These predictions aided
in designing structures capable of resisting underwater
explosions. The studies relijed on flat-plate theory and
involved a single air or water-backed plate. The fluid
involved was an acoustic fluid (irrotational, inviscid, with
speed of sound independent of pressure). The present investi-
gation differs only from those above in that two flat plates
coupled by an acoustic fluid are considered. The case where the
second plate is water-backed models the sail appendage of a
submarine. The case where the second plate is air-backed is
also computed.

Another class of investigations consists of rigorous
treatments of the interaction of a shock wave with an elastic
cylindrical or spherical shell, or concentric shells which are
fluid coupled [4-9]. These studies incorporate radiation,

scattering, diffraction effects and elastic deformation of the

shell. The cases considered in this report are not of the type
above. The plates are infinite, free, perfectly rigid and are
excited by a plane wave pressure pulse of infinite extent. The
only motion is the translation of the plate in the direction

normal to the plate. An exposition of flat-plate theory can
be found in Cole or Keil [10] {11].

FLAT-PLATE CALCULATION WITH CONTINUOUS FLUID

As a first case consider two infinite free plates with mass
per unit area my, and m, and water in the three regions as
depicted in Figure 1. "The plates are separated by a distance A.
The pressures shown represent the incident, transmitted, and
reflected wave system. The equations of motion are from flat-
plate theory:

mﬁ] = P1 + P2 - P3 - P4, X1(0) = X](O) =0 (1)
@?2 = P5 + P6 - P7, x2(0) = X2(0) =0 (2)
where the pressures are

Py = P et (3)
Py = ock (t) + P (t)

P4 = P5 (t - A/c)

Manuscript submitted August 27, 1981.




P7 = ocXZ(t)

and where o is the density of seawater, about 1026 kg/m3, c is
the speed of sound in seawater about 1528m/s_ , and s is the
decay constant for the pressure pulse, 1000s

The equations with m, = m, = m may be written for the first
three time intervals, 0 t& A/c, A/c to 2A/c, and 2A/c to 3A/c as:

0 to A/c (4)
.x. + gp_c.x = _Z_P.Q_ e-st (5)

1 m "1 m
X2 = 0
A/c to 2A/c

2P

e 2pcy _ o _-st (6)

I Wl
. ZDC' _ _'3_9_ .
xz + T 2 = m X'l<t - A/C) (7) i
2A/c to 3A/c

2p

X 2ocy "0 -st 2oc; 2pcy :
X] + = X1-—ﬁ—e +os Xz(t-A/c)- - X](t-ZA/c) (8) 1
X, + 89Cx - 28C y (4.
X2 t X2 ~ X](t A/c) (9)

The solutions for the velocities may be obtained by
standard methods for solving differential equations. They are
for the three time periods:

0 to A/C
e 2Po -rt _-st
X{ = armsy [e "-e 771, r = 2ce/m (10)

XZ -




t e 0 -rt° -st” .
Xo = - [e -e ], t7 =t - A/c (13)
2 m(s—r) m(S-r)
2A/c to 3A/c
2 . . 2 . 2 .
k ) r-p t 2 e—rt ) 2r Po tre Tt . 2r-P [e-rt - e-St ]
1 m (s-r) m(s-r)2 m(s-r)3
2rP . =rt” 2rpP
0 t’e 0 -rt -st”
- + [e - e ]
m{s-r) m(s-v)?
2P
0 -rt -st . _
—reyy LeT - et =t - 2A/¢C (14)
. 2rp - 2rP -rt” -st”
0 . -1t 0 [e - e Sty ¢t =t - A/C (15)
= t7e- - e ’
XZ mfs-r‘i (S-Y‘)

Consider the situation where the plates are of different
masses and the second plate is air-backed. The equations of
motion change slightly in three time periods considered, since
p, = 0 and my £ m,. The solutions to these equations are similar
tg the water—backéd case.

Figure 2a shows numerical results for the first case where
the secogd plate is water-backed. The mass of both plates is
124 kg/m~ and the pressure pulse has an initial pressure of
P = pcu_ with u_ the particle velocity equal to Im/s. The
t¥me A/c%is abou® 2.1 ms. At t = 0 the first plate begins
accelerating, reaches a peak velocity, and then decelerates in a
typical exponential fashion. At t = A/c the transmitted wave
reaches the second plate and accelerates the second plate to very
nearly the velocity of the first plate. At t = 2A/c, the wave
reflected from plate 2 reaches plate 1 and imparts to it a small
negative velocity. Figure 2b shows the time history of the
pressures on the front and back of plate 1. The pressure on the
front of plate 1 leads in time the pressure on the back of plate
1 but when the reflected wave returns to plate 1 the pressure on
the back leads the pressure on the front. The pressure on the
front of the second plate leads in time the pressure on the back
as can be seen in Figure 2c. At both plate 1 and 2, the
pressures on the front and back cross at the time when the peak
velocities occur.

Figure 3a shows the velocities of the piates for the case
where the second plate is air-backed, the other parameters being
the same as the previous case. The first plate reaches about the
same velocity as in the first case. The second plate being air-
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backed reaches a velocity almost double that of the water-backed
plate. The reflected wave imparts a small negative velocity to
plate 1 at t = 2A/c, however, unlike the water=backed case, plate
1 experiences a second large forward velocity between t = 2A/c

and t = 3A/c before damping out. This is due to the large nega-
tive pressure reflected back from the air-backed plate. The time
history of the pressure on the front and back of plate 1 (Fig. 3b)
follows almost the same pattern as the water-backed case until
shortly after t = 2A/c when a large negative pressure on the back
of plate 1 occurs which leads in time the negative pressure on the
front. This condition is responsible for the second forward surge
of plate 1 in the air-backed case. The front and back pressure
curves cross, as in the water-backed case, when the peak veloci-
ties occur, either positive or negative. The time history of the
pressure >n the front and back of plate 2 is shown in Figure 3c.
The pressure on the back of plate 2 is set to 0. This condition
forces the pressure difference across plate 2 to be much greater
than when it was water-backed; consequently, nlate 2 reaches a
much greater velocity.

Figure 4,shows the plate velocities where the plate masses
are 392 kg/m- and plate 2 is water-backed. The velocity peaks
are smaller and broader due to the larger inertia of the plates.

“Figure 5a shows éhe plate velocities where the first plate hasg a

mass of 124 kg/m~ and the second plate has a mass of 392 kg/m~ and
is air-backed. As is exgected the second plate attains a velocity
higher tEan the 392 kg/m~ water-backed plate but lower than the
124 kg/m~ air-backed plate. The first plate has a larger negative
velocity peak but a smaller second positive Zelocity peak than in
the case where the second plate was 124 kg/m~ and air-backed
(Figure 3a). This occurs because the reflected wave from the
heavier plate has a greater positive pressure peak but small neg-
ative pressure peak than the reflected wave from the lighter
plate. This can be seen by comparing the pressures on the back

of plate 1 shown in Figures 3b and 5b. Figure 5c shows the pres-

~

sure on the front and back of plate z.
LUMPED PARAMETER MODEL OF FLUID-PLATE SYSTEM

A second model of the double plate problem consists of 2
plates and the fluid region in between modeled as a lumped para-~
meter system of n + 1 masses and n springs. A similar model has
been used in calculating the responses of free-flooding areas of
submarines to underwater explosion attacks. The water in the free
flooded areas of the United Kingdom's A2 model submarine [12] was
modeled using NASTRAN solid elements. The solid elements were
specified to have a very small shear and bulk modulus matching
that of water. This representation allowed for wave propagation
in the interior fluid. The exterior fluid was modeled using a
doubly asymptotic approximation whose early-time response corres-
ponded to the flat-plate formulation. The present investigation
was undertaken in part to check the appropriateness of modeling
the interior fluid with solid elements as describgd above. Those
examples where the plate masses are both 124 kg/m~ and A/c is 2.1
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ms model the water-filled bridge-fin (sail) of the
A-2 model. The solutions in these cases represent the response
of the two sides of the sail to the passage of the shock wave
from some of the tests. In reference 12 no attempt was made to
determine the optimum solid element size with respect to element
ringing. The calculations presented in this report show the
effect of varying the number of fluid elements on the plate
responses.

The lumped parameter system shown in Figure 6 is governed
by a system of n + 1 differential equations, which can be
written as:

(m, + w)X] = Py o+ Py KK, - KX (16)

2wX, = KX3 - 2KX, + KX, (17)

(my + W)X yq =KX op + KX, - Py (19)
_ -st

where P, = P e ] (20)

P7=ocxn+]
w= pA/(2n) fluid mass
K = nocz/A spring constant

This system of n + 1 differential equations may be solved by
using a Runge-Kutta method.

Figure 7 shows the numerical solution for n = 2, which
corresponds to 2 fluid elements, or 3 couE1ed differential
equations. The plate masses are 124 kg/m° and A/c is about
2.1 ms, . ' the same parameters used in the continuous
fluid case. The first plate accelerates then undergoes
damped oscillations. The second plate slowly accelerates then
decelerates. Figure 8 shows the numerical solution for n=4
which corresponds to 4 fluid elements or 5 differential
equations. late 1 undergoes highly damped oscillations and
plate 2 less damped oscillations. Oscillations occur in the
velocity due to the compressibility of the fluid introduced
through the spring constant K which is proportional to the
bulk modulus of the fluid, pc2. The first plate's oscillations
are more highly damped than the second plate's because the




plate 1 1is loaded on one side by the pressure pulse and on

the other side by the spring system, the force balance tending
to reduce the amplitude of the velocity oscillations. Plate

2 is loaded only on one side by the transmitted pressure wave
traveling through the spring system. Figure 9 shows the

same calculation for 5 fluid elements. The oscillations are
slightly higher in frequency. Figure 10, for 20 fluid elements
shows still higher frequency oscillations. The time histories
for the plate including the small negative velocity spike of
plate 1 due to the reflected wave is similar to the continuous
fluid case (Figure 2a). Figure 10b shows the time histories of
the forces on the front and back of plate 1. The force on the
front of plate 1 leads in time the force on the back, but when
the reflected wave returns the force on the back leads the force
on the front. The force amplitudes oscillate but cross at the
times when the peak plate velocities occur. Figure 10c shows
the timehistories of the forces on the front and back of

plate 2. The force on the front of plate 2 leads in time the
force on the back, the two crossing at times corresponding to
the peaks and nulls in the plate velocity oscillations. The
force time histories resemble the continuous fluid pressure
time histores (Figures2b and 2c) except for the damped oscilla-
tions. It is evident that as more fluid elements are added
that the lumped parameter solution approaches the continuous
fluid solution. Even the crude model with 2 fluid elements
yields peak plate velocities, which have similar magnitudes and
times to the continuous fluid case. Figures 1la, b, and c

show the calculation for 20 fluid elements, but where the second
plate is air-backed. The times histories of the plate
velocities and forces on the plates resemble the continuous
fluid case (Figures 3a, b, and c¢). Finally, figures 12a, b

and ¢ which are for 20 fluid elements, plate 1 of mass 124
kg/m2, and plate 2 of mass 392 kg/m2 and air-backed, look
similar to the analogous continuous fluid results (Figures 5a,
b, and c).

CONCLUSIONS

The cases where fthe plates are of equal mass and the second
plate is water-backed most closely model the sajl appendage
on a submarine. The most important conclusion from the water-
backed cases is that the second plate accelerates as if the
first plate were not there or in other words the first plate
is transparent to the pressure pulse. The small negative
velocity spike of the first plate due to the reflected wave
is the only modification to the plate motion caused by the
fluid coupling.

The cases where the second plate is air-backed also show
that the first plate is almost transparent to the pressure
pulse. The only coupling effect different from the water-
backed case is the reflected pressure wave with its negative
pressure causing the first plate to experience a second forward
velocity surge shortly after t = 2A/c.

6




Changing the masses of the plates only affects the
amplitude and width of the velocity and pressure peaks but
introduces no major qualitative variations in the time
histories.

For the range of parameters inv=stigated (which include an
approximate correspondence with the water-filled sail of the
A2 model) modeling interior fluid as an undamped system of
Tumped springs and masses degrades the detail of the calculated
motion by introducing damped oscillations, but the general
features of the response (timing and magnitude of the peak
velocities, for example) are not greatly affected even for
relatively crude representations of the fluid, of 2 to 5 fluid
elements. As more fluid elements are used, for example, 20,
the time histories of the plate velocities and forces approach
the continuous fluid time histories.
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